Gate

栅极材料的革命 (Gate Electrode) (转)

本文转自芯苑,ic-garden.cn (由于芯苑会经常关闭站点,故转载存留)半导体制程技术的发展最为曲折离奇的故事应该算是栅极了,从MOSFET (Metal Oxide Semiconductor)的第一个字母我们就知道曾经的曾经这个栅极材料还是Metal Gate呢,可是现在8寸的主流又是Poly Gate了,到了12寸的45nm以下又还原到Metal Gate了,真正上演了佛家的前世轮回因

栅极介质层的质量评估 (GOI) (转)

随着MOSFET的尺寸越来越小,栅极介质层的厚度也是越来越薄。作为MOSFET的核心,Gate OXide的可靠性一直都是最主要的制约器件是否可以量产的因素之一。前面我们几乎讲完了Gate Electrode和Gate Dielectric两个部分,今天我们该趁热打铁把Gate Dielectric的可靠性讲完,其实就是我们FAB里面经常讲的GOI测试。

MOS器件理论之–DIBL, GIDL (转)

前面几乎讲了MOS的结构原理,热载流子(HCI),穿通(Punch Trough),亚阈值(Swing/St),长沟、短沟、宽沟、窄沟等特性。几乎基本的都讲完了,还剩下一点就是DIBL和GIDL了(以前在学校,我总分不清这两个关系),后面再说Burried Channel和Poly Gate Depletion吧,貌似还

这可能最简单的半导体工艺流程(一文看懂芯片制作流程)(转)

本文来源于公众号“半导体产业园”本来打算每周中发一篇文章,但是现在是国庆假期期间,就加个班,写了第二篇。码字不易啊~OK,我们进入正题~上一期我们聊了CMOS的工作原理,我相信你即使从来没有学过物理,从来没学过数学也能看懂,但是有点太简单了,适合入门,如果你想了解更多的CMOS内容,就要看这一期的内容了,因为只有了解完工艺流程(也就是二极管的制作流程)之后,才可以继续了解后面的内容。那我们这一期就

Spacer/侧墙制程-由来已久! (转)

本文转自芯苑,ic-garden.cn (由于芯苑会经常关闭站点,故转载存留)在讲Spacer的Process理论之前,先讲下Spacer的作用,为什么要有这么个结构?这样你们才能永远记住它。我们这些80后做半导体PIE的一出道就接触的是1.0um以下,我们称之为亚微米制程(到0.25um以下,我们称之为深亚微米, deep sub-micron)。而我们在亚微米以及深亚微米时代随着栅极长度/沟道

栅极介质层的变迁(Gate Dielectric) (转)

本文转自芯苑,ic-garden.cn (由于芯苑会经常关闭站点,故转载存留)昨天已经讲完了栅极材料的演变(Gate Electrode),当然伴随它一起的自然就是栅极介质层(Gate Dielectric),记住我讲的是栅极介质层,不是我们平常讲的栅极氧化层(Gate Oxide),早期我们讲的MOSFET的介质层就是我们狭义讲的Oxide,但是随着Moore's Law的scale down,

《LOCOS与STI》你真的知道吗?(转)

本文转自芯苑,ic-garden.cn (由于芯苑会经常关闭站点,故转载存留)我们的CMOS制程就是做出NMOS和PMOS,再复杂的电路对我们FAB来讲也就是NMOS+PMOS,那我们总不希望这两个MOS之间互相漏电吧,所以MOSFET之间的隔离技术应运而生。以前我给学员们讲课总是会直观的说,我们的MOS为有源器件(因为需要有两个电压才可以工作,一个叫工作电压一个叫控制电压),那有源器件所在的区域

CMOS器件进阶版讲解 (转)

本文转自芯苑,ic-garden.cn (由于芯苑会经常关闭站点,故转载存留)上一篇介绍了简单的MOS的历史和原理结构介绍,应该能够建立起比较基础的认识了,下面我们继续讲讲MOS的特性以及半导体人该关注的制程要点。先简单回顾下MOS的重要参数开启电压,也叫阈值电压,英文叫做Threshold Voltage (Vth)。就是在栅极加电压,通过栅极氧化层的电场耦合效应在下面的沟道表面感应出与衬底/W

绿色能源的倡导者-《BCD技术》 (转)

本文转自芯苑,ic-garden.cn (由于芯苑会经常关闭站点,故转载存留)在这个万物互连的时代,Power is Everything!所以电子产品厂商们一直在挑战电池的化学特性以及空间缩小的极限来放更大的容量,然而我们半导体人的贡献就在于给电源配一个电源管家(PMIC: Power Management IC),来给各个components提供电源,然而这些电源管家自己也需要消耗电源(Con